Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.083
Filtrar
1.
J Anim Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656435

RESUMO

This study evaluated if vasoactive intestinal polypeptide (VIP) influences growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Sixteen wether lambs (69.6 ± 1.9 kg) were housed in individual pens, adapted to a corn grain-based diet, and randomly assigned to 2 treatment groups. Lambs were injected intraperitoneally every other day for 28 days with saline (0.9% NaCl) containing no VIP (n = 8; control) or containing VIP (n = 8; 1.3 nmol/kg BW). All lambs were transferred to individual metabolic crates for the final seven days of the experiment to measure nitrogen balance and nutrient digestibility. At the end of the treatment period, lambs were slaughtered, and pancreatic tissue, small intestinal tissue, and rumen fluid were collected for protein, digestive enzymes, ruminal pH, and volatile fatty acid (VFA) analyses. Lambs treated with VIP had greater final body weight, average daily gain, and gain:feed (P = 0.01, 0.05, 0.03, respectively). No differences between treatment groups were observed (P ≥ 0.25) for nutrient intake, digestibility, nitrogen retention, ruminal pH, and VFA concentrations. Moreover, VIP treatment did not influence (P ≥ 0.19) plasma glucose, urea N, and insulin concentrations. Treatment with VIP increased (P = 0.03) relative cecum weight (g/kg body weight) and decreased (P = 0.05) relative brain weight. Pancreatic and intestinal digestive enzyme activities, except for duodenal maltase (P = 0.02), were not influenced (P ≥ 0.09) by VIP treatment. These data suggest that the administration of VIP may have potential to improve average daily gain and gain:feed in lambs fed grain-based diets.

2.
J Hazard Mater ; 470: 134184, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569344

RESUMO

An excellent textual properties and performance La0.9Ce0.1Co0.9Pd0.1O3-BaO/Al2O3 catalyst was synthesized. The reaction mechanism of H2/NOx over the La0.9Ce0.1Co0.9Pd0.1O3-BaO/Al2O3 catalyst was investigated by temperature programmed reduction/ desorption/ surface reaction (TPR/D/SR) technologies and in-situ diffuse reflectance Fourier transform (DRIFT) technology. The results show that cerium or palladium species are inserted into the cells of LaCoO3, as well as they synergetic promote the redox properties of the La0.9Ce0.1Co0.9Pd0.1O3-BaO/Al2O3 catalyst. Surface activated nitrates exist over the La0.9Ce0.1Co0.9Pd0.1O3-BaO/Al2O3 catalyst, with thermal stable increasing in the order: absorbed N2O4 < monodentate nitrates < chelating bidentate nitrates < nitrates unidentate < free ionic nitrates < bulk free ionic nitrates. H2 preferentially reacted with absorbed N2O4 and monodentate nitrates at low temperatures, due to their high activity. The concentration of generated NH3 from the redox reaction of H2/NOx achieves the maximum value between 350 and 450 °C over the La0.9Ce0.1Co0.9Pd0.1O3-BaO/Al2O3 catalyst. Compared with the NOx adsorption process at 50 °C, monodentate nitrates and absorbed N2O4 disappeared due to their low thermal stability, chelating bidentate nitrates become stronger, as well as free ionic nitrates converted to bulk free ionic nitrates with higher thermal stability at 350 °C. When H2 is exposed to NOx species adsorbed on La0.9Ce0.1Co0.9Pd0.1O3-BaO/Al2O3, chelating bidentate nitrates and bulk free ionic nitrates are consumed gradually, indicating that although the bulk free ionic nitrates own high stability, it also could be consumed by involving in the H2/NOx reaction at 350 °C. The quantitative H2/NO reaction experiments confirmed the results of H2-TPSR and NSR. It is beneficial to the formation of NH3 when the H2/NO ratio is more than 2.5. Comparing traditional Pt-BaO/Al2O3 catalyst, the La0.9Ce0.1Co0.9Pd0.1O3-BaO/Al2O3 catalyst exhibit an excellent performance, including considerable NH3 production property, lower N2O selectivity, and the precious metal saving.

3.
J Exp Bot ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661441

RESUMO

We describe how increased root cortical parenchyma wall width (CPW) can improve tolerance to drought stress in maize by reducing the metabolic costs of soil exploration. Significant variation (1.0 to 5.0 µm) for CPW was observed in maize germplasm. The functional-structural model RootSlice predicts that increasing CPW from 2 to 4 µm is associated with ca. 15% reduction in root cortical cytoplasmic volume, respiration rate, and nitrogen content. Analysis of genotypes with contrasting CPW grown with and without water stress in the field confirms that increased CPW is correlated with ca. 32 to 42% decrease in root respiration. Under water stress in the field, increased CPW is correlated with 125% increased stomatal conductance, 325% increased leaf CO2 assimilation rate, 73 to 78% increased shoot biomass, and 92 to 108% increased yield. CPW was correlated with leaf mesophyll midrib parenchyma wall width, indicating pleiotropy. GWAS analysis identified candidate genes underlying CPW. OpenSimRoot modeling predicts that a reduction in root respiration due to increased CPW would also benefit maize growth under suboptimal nitrogen, which requires empirical testing. We propose CPW as a new phene that has utility under edaphic stress meriting further investigation.

4.
J Exp Bot ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661493

RESUMO

To meet the demands of the new Green Revolution and sustainable agriculture, it is important to develop crop varieties with improved yield, nitrogen use efficiency, and stress resistance. Nitrate is the major form of inorganic nitrogen available for plant growth in many well-aerated agricultural soils, and acts as a signaling molecule regulating plant development, growth, and stress responses. Abscisic acid (ABA), an important phytohormone, plays vital roles in integrating extrinsic and intrinsic responses and mediating plant growth and development in response to biotic and abiotic stresses. Therefore, elucidating the interplay between nitrate and ABA can contribute to crop breeding and sustainable agriculture. Here, we review studies that have investigated the interplay between nitrate and ABA in root growth modulation, nitrate and ABA transport processes, seed germination regulation, and drought responses. We also focus on nitrate and ABA interplay in several reported omics analyses with some important nodes in the crosstalk between nitrate and ABA. Through these insights, we proposed some research perspectives that could help to develop crop varieties adapted to a changing environment and to improve crop yield with high nitrogen use efficiency and strong stress resistance.

5.
PeerJ ; 12: e17113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646486

RESUMO

Peatland restoration usually aims at restarting the peatlands' function to store carbon within peat. The soil properties of the near-surface peat can give a first understanding of this process. Therefore, we sampled pH value, total organic carbon content (TOC), total nitrogen content (TN), C/N ratio as well as dry bulk density (BD), and describe the structure of near-surface peats in six restored fens in North-East Germany before (2002-2004) and after (2019-2021) restoration. Before restoration, the study sites showed peat degradation to various extents in their near-surface peats. pH values remained relatively stable over time. Comparing the degraded peat horizons, TOC increased significantly in four study sites, ranging from 35.7% to 47.8% in 2002-2004 and from 42.5% to 54.0% in 2019-2021. TN varied from 1.5% to 3.5% in 2002-2004 and from 1.8% to 3.2% in 2019-2021, but changes were only significant in one site, showing a slight decrease. In three sites, the increase in C/N ratio was significant, indicating lower nutrient availability. BD ranged from 0.08 to 0.48 g/cm3 in 2002-2004 and from 0.10 to 0.16 g/cm3 in 2019-2021, decreasing significantly in four sites. The structure of the degraded peat horizons changed after restoration to a more homogenous, sludge mass with larger re-aggregates. In three sites, new peat moss peat layers above the degraded soil horizon were present in 2019-2021, with a mean thickness of 6.8 to 36.1 cm. The structure was comparable to typical, slightly decomposed peat moss peat. Our findings suggest that within about 17 years after fen restoration, and thereby a water table rise close to surface, TOC of the near-surface peats increased to values that are typical for undisturbed peatlands. This indicates that restoration can lead to the re-establishment of peatlands as potential carbon sinks, with TOC within the near-surface peat as one key factor in this process. Further, we assume that the decrease in nutrient availability, decrease of BD, and new, undisturbed peat layers can favor the establishment of mire-specific biodiversity and support ecosystem services similar to near-natural mires.


Assuntos
Carbono , Nitrogênio , Solo , Áreas Alagadas , Solo/química , Carbono/análise , Nitrogênio/análise , Alemanha , Concentração de Íons de Hidrogênio , Recuperação e Remediação Ambiental
6.
Sci Total Environ ; : 172609, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663623

RESUMO

Nitrogen-fixing cyanobacteria (NFC) are photosynthetic prokaryotic microorganisms capable of nitrogen fixation. They can be used as biofertilizers in paddy fields, thereby improving the rice tillering capacity and yield. To reveal the microbiological mechanisms by which nitrogen-fixing cyanobacteria alter soil carbon storage, we conducted a field experiment using NFC as a partial substitute for nitrogen fertilizer in paddy fields in the Sanjiang Plain of Northeast China's Mollisols region. Using metagenomic sequencing technology and Biolog Ecoplate™ carbon matrix metabolism measurements, we explored the changes in the soil microbial community structure and carbon utilization in paddy fields. The results indicated that the replacement of nitrogen fertilizer with NFC predisposed the soil microbial community to host a great number of copiotrophic bacterial taxa, and Proteobacteria and Actinobacteria were closely associated with the metabolism of soil carbon sources. Moreover, through co-occurrence network analysis, we found that copiotrophic bacteria clustered in modules that were positively correlated with the metabolic level of carbon sources. The addition of NFC promoted the growth of copiotrophic bacteria, which increased the carbon utilization level of soil microorganisms, improved the diversity of the microbial communities, and had a potential impact on the soil carbon stock. The findings of this study are helpful for assessing the impact of NFC on the ecological function of soil microbial communities in paddy fields in the black soil area of Northeast China, which is highly important for promoting sustainable agricultural development and providing scientific reference for promoting the use of algal-derived nitrogen fertilizers.

7.
Sci Total Environ ; : 172684, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663629

RESUMO

Nitrogen isotopes (δ15N) have been used as an indicator of anthropogenic nitrogen loading at local and regional scales. We examined δ15N in fish from estuaries across the continental United States. In the summer of 2015, the U.S. Environmental Protection Agency's National Coastal Condition Assessment (NCCA) collected fish in 136 coastal waterbodies throughout the United States. Whole fish were analyzed by NCCA for metals, organic contaminants, and lipids. For this study, we also analyzed these fish for isotopes of nitrogen (N). NCCA collected water quality, nutrients, chlorophyll a, and sediment chemistry at each site. We used these data, along with fish life history and watershed land use, to examine how whole fish δ15N was related to these environmental variables using random forest regression models at national and ecoregional scales. At the national scale, fish δ15N were negatively related to total N:total phosphorous (P) ratios (TN:TP) in surface water and reflected differences between the P-limited, δ15N depleted sites in the Floridian ecoregion to sites in other regions. δ15N was lower on the Atlantic relative to the Pacific coast. When considered by region, TN:TP was an important predictor of fish δ15N in 4 of 9 ecoregions, with higher δ15N observed with increasing N limitation (lower TN:TP) Fish life history was also an important predictor of fish δ15N at both the national and ecoregional scale. Whole fish δ15N was positively associated with bioaccumulative contaminants such as PCBs and mercury. Although land use was related to δ15N in fish, it was location specific. This study showed that N stable isotopes reflected ecological conditions at both regional and continental scales.

8.
Acute Med Surg ; 11(1): e957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665593

RESUMO

Background: Nitrogen dioxide (NO2) is known to cause lung injury, but there is no established treatment for acute respiratory distress syndrome (ARDS) caused by NO2 inhalation. Case Presentation: A 35-year-old man was accidentally exposed to NO2 fumes and presented to the emergency department. On admission, his oxygen saturation was 87% on ambient air and he was diagnosed with ARDS caused by NO2 inhalation and immediately intubated; however, hypoxemia and hypercapnia were not ameliorated. Hence, veno-venous extracorporeal membrane oxygenation (V-V ECMO) was introduced and the ventilator settings were set for lung-protective ventilation. Methylprednisolone was also administered. After the initiation of these treatments, oxygenation gradually improved. Therefore, ECMO was weaned off on day 11 and he was extubated on day 12. Conclusion: Lung injury caused by NO2 inhalation can cause ARDS, and lung-protective ventilation with V-V ECMO induction, as well as glucocorticoid administration, may be effective for this condition.

9.
J Asthma Allergy ; 17: 349-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623450

RESUMO

Background: There is an increasing body of evidence associating short-term ambient nitrogen dioxide (NO2) exposure with asthma-related hospital admissions in children. However, most studies have relied on temporally resolved exposure information, potentially ignoring the spatial variability of NO2. We aimed to investigate how daily NO2 estimates from a highly resolved spatio-temporal model are associated with the risk of emergency hospital admission for asthma in children in England. Methods: We conducted a time-stratified case-crossover study including 111,766 emergency hospital admissions for asthma in children (aged 0-14 years) between 1st January 2011 and 31st December 2015 in England. Daily NO2 levels were predicted at the patients' place of residence using spatio-temporal models by combining land use data and chemical transport model estimates. Conditional logistic regression models were used to obtain the odds ratios (OR) and confidence intervals (CI) after adjusting for temperature, relative humidity, bank holidays, and influenza rates. The effect modifications by age, sex, season, area-level income deprivation, and region were explored in stratified analyses. Results: For each 10 µg/m³ increase in NO2 exposure, we observed an 8% increase in asthma-related emergency admissions using a five-day moving NO2 average (mean lag 0-4) (OR 1.08, 95% CI 1.06-1.10). In the stratified analysis, we found larger effect sizes for male (OR 1.10, 95% CI 1.07-1.12) and during the cold season (OR 1.10, 95% CI 1.08-1.12). The effect estimates varied slightly by age group, area-level income deprivation, and region. Significance: Short-term exposure to NO2 was significantly associated with an increased risk of asthma emergency admissions among children in England. Future guidance and policies need to consider reflecting certain proven modifications, such as using season-specific countermeasures for air pollution control, to protect the at-risk population.

10.
Food Chem X ; 22: 101345, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623501

RESUMO

This study investigated the effect of plasma treatment on reused water and evaluated the interactions of the plasma-treated water (PTW) with plants or microbes to determine the optimal PTW for reuse. The repeated treatment gradually accumulated nitrate (NO3-) in the PTW and lowered its pH; afterward, it led to the sprouted soybeans accumulating other inorganic ions in the PTW. The biomass of soybean sprouts was enhanced by the accumulated NO3- but decreased due to the pH effect. Meanwhile, the acidic pH reduced the microbial counts, but they increased after sprinkling the PTW over the sprouts. The optimal PTW in our study, which had a gradual increase of NO3- (≤321.8 mg·L-1) with an acceptable pH (≥pH 3), significantly enhanced the biomass by 4.2% compared to the untreated control. Additionally, it increased the total content of amino acids and isoflavones by 9% and 18% in the growing part, respectively.

11.
Ecol Evol ; 14(4): e11297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623520

RESUMO

Estimation of energy partitioning at leaf scale, such as fluorescence yield (ΦF) and photochemical yield (ΦP), is crucial to tracking vegetation gross primary productivity (GPP) at global scale. Nitrogen is an important participant in the process of light capture, electron transfer, and carboxylation in vegetation photosynthesis. However, the quantitative relationship between leaf nitrogen allocation and leaf energy partitioning remains unexplored. Here, a field experiment was established to explore growth stage variations in energy partitioning and nitrogen allocation at leaf scale using active fluorescence detection and photosynthetic gas exchange method in rice in the subtropical region of China. We observed a strongly positive correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF during the vegetative growth stage. There were significant differences in leaf energy partitioning, leaf nitrogen allocation, and the relationship between ΦF and ΦP before and after flowering. Furthermore, flowering weakened the correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF. These findings highlight the crucial role of phenological factors in exploring seasonal photosynthetic dynamics and carbon fixation of ecosystems.

12.
Chemosphere ; 357: 142079, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642771

RESUMO

Micro-nano plastics (MNPs; size <5 mm), ubiquitous and emerging pollutants, accumulated in the natural environment through various sources, and are likely to interact with nutrients, thereby influencing their biogeochemical cycle. Increasing scientific evidences reveal that MNPs can affect nitrogen (N) cycle processes by affecting biotopes and organisms in the environmental matrix and MNPs biofilms, thus plays a crucial role in nitrous oxide (N2O) and ammonia (NH3) emission. Yet, the mechanism and key processes behind this have not been systematically reviewed in natural environments. In this review, we systematically summarize the effects of MNPs on N transformation in terrestrial, aquatic, and atmospheric ecosystems. The effects of MNPs properties on N content, composition, and function of the microbial community, enzyme activity, gene abundance and plant N uptake in different environmental conditions has been briefly discussed. The review highlights the significant potential of MNPs to alter the properties of the environmental matrix, microbes and plant or animal physiology, resulting in changes in N uptake and metabolic efficiency in plants, thereby inhibiting organic nitrogen (ON) formation and reducing N bioavailability, or altering NH3 emissions from animal sources. The faster the decomposition of plastics, the more intense the perturbation of MNPs to organisms in the natural ecosystem. Findings of this provide a more comprehensive analysis and research directions to the environmentalists, policy makers, water resources planners & managers, biologists, and biotechnologists to do integrate approaches to reach the practical engineering solutions which will further diminish the long-term ecological and climatic risks.

13.
BioTechnologia (Pozn) ; 105(1): 69-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633893

RESUMO

In molecular biological studies, considerable attention is paid to macrocyclic nanoscale compounds known as calix[4]arenes. An imperative concern in biochemical membranology and molecular biotechnology is the exploration of effectors capable of modifying the intensity of redox reactions within the inner mitochondrial membrane and influencing the activity of its Ca2+ transport systems. The simulation model development is relevant to formalize and generalize the experimental data and assess the conformity of experimental results with theoretical predictions. Experiments were carried out on a suspension of isolated rat myometrial mitochondria. The synthesized thiacalix[4]arene C-1193, containing four sulfur atoms, was employed. Demonstrations of time-dependent and concentration-dependent (0.01-10 µM) inhibition of Ca2+ accumulation and reactive oxygen species (ROS) formation by mitochondria in the presence of C-1193 were observed. While C-1193 inhibited the oxidation of NADH and FADH2, it did not induce mitochondrial swelling. The thiacalix[4]arene also inhibited the synthesis of nitric oxide, with a Ki of 5.5 ± 1.7 nM, positioning it as a high-affinity blocker of endogenous NO generation in mitochondria. These results are the basis for the possible application of the synthesized thiacalix[4]arene as a tool in researching biochemical processes in mitochondria. A simulation model employing functional hybrid Petri nets was developed, reproducing the functional activity of mitochondria, including simultaneous NADH oxidation, ROS formation, NO synthesis, and Ca2+ accumulation. The derived equations formalize and describe the time dependencies of the listed processes in the medium under the influence of thiacalix[4]arene C-1193.

14.
Front Aging Neurosci ; 16: 1389454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633980

RESUMO

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to counteract their harmful effects, playing a key role in the pathogenesis of brain and lung-related diseases. This review comprehensively examines the intricate mechanisms by which oxidative stress influences cellular and molecular pathways, contributing to neurodegenerative, cardiovascular, and respiratory disorders. Emphasizing the detrimental effects on both brain and lung health, we discuss innovative diagnostic biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the potential of antioxidant therapies. For these topics, we provide insights into future research directions in the field of oxidative stress treatment, including the development of personalized treatment approaches, the discovery and validation of novel biomarkers, and the development of new drug delivery systems. This review not only provides a new perspective on understanding the role of oxidative stress in brain and lung-related diseases but also offers new insights for future clinical treatments.

15.
Synth Syst Biotechnol ; 9(3): 453-461, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38634001

RESUMO

Vitamin B12 is a complex compound synthesized by microorganisms. The industrial production of vitamin B12 relies on specific microbial fermentation processes. E. coli has been utilized as a host for the de novo biosynthesis of vitamin B12, incorporating approximately 30 heterologous genes. However, a metabolic imbalance in the intricate pathway significantly limits vitamin B12 production. In this study, we employed multivariate modular metabolic engineering to enhance vitamin B12 production in E. coli by manipulating two modules comprising a total of 10 genes within the vitamin B12 biosynthetic pathway. These two modules were integrated into the chromosome of a chassis cell, regulated by T7, J23119, and J23106 promoters to achieve combinatorial pathway optimization. The highest vitamin B12 titer was attained by engineering the two modules controlled by J23119 and T7 promoters. The inclusion of yeast powder to the fermentation medium increased the vitamin B12 titer to 1.52 mg/L. This enhancement was attributed to the effect of yeast powder on elevating the oxygen transfer rate and augmenting the strain's isopropyl-ß-d-1-thiogalactopyranoside (IPTG) tolerance. Ultimately, vitamin B12 titer of 2.89 mg/L was achieved through scaled-up fermentation in a 5-liter fermenter. The strategies reported herein will expedite the development of industry-scale vitamin B12 production utilizing E. coli.

16.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592838

RESUMO

Smooth bromegrass (Bromus inermis) is a perennial, high-quality forage grass. However, its seed yield is influenced by agronomic practices, climatic conditions, and the growing year. The rapid and effective prediction of seed yield can assist growers in making informed production decisions and reducing agricultural risks. Our field trial design followed a completely randomized block design with four blocks and three nitrogen levels (0, 100, and 200 kg·N·ha-1) during 2022 and 2023. Data on the remote vegetation index (RVI), the normalized difference vegetation index (NDVI), the leaf nitrogen content (LNC), and the leaf area index (LAI) were collected at heading, anthesis, and milk stages. Multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) regression models were utilized to predict seed yield. In 2022, the results indicated that nitrogen application provided a sufficiently large range of variation of seed yield (ranging from 45.79 to 379.45 kg ha⁻¹). Correlation analysis showed that the indices of the RVI, the NDVI, the LNC, and the LAI in 2022 presented significant positive correlation with seed yield, and the highest correlation coefficient was observed at the heading stage. The data from 2022 were utilized to formulate a predictive model for seed yield. The results suggested that utilizing data from the heading stage produced the best prediction performance. SVM and RF outperformed MLR in prediction, with RF demonstrating the highest performance (R2 = 0.75, RMSE = 51.93 kg ha-1, MAE = 29.43 kg ha-1, and MAPE = 0.17). Notably, the accuracy of predicting seed yield for the year 2023 using this model had decreased. Feature importance analysis of the RF model revealed that LNC was a crucial indicator for predicting smooth bromegrass seed yield. Further studies with an expanded dataset and integration of weather data are needed to improve the accuracy and generalizability of the model and adaptability for the growing year.

17.
Environ Sci Technol ; 58(16): 7165-7175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597176

RESUMO

Increasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.

18.
Sci Total Environ ; 929: 172478, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621545

RESUMO

Biostimulation by supplementing of nitrogen and phosphorus nutrients is a common strategy for remediation of petroleum-polluted soils. However, the dosage influence of exogenous nitrogen or phosphorus on petroleum hydrocarbon removal and soil ecotoxicity and microbial function remain unclear. In this study, we compared the efficiencies of hydrocarbon degradation and ecotoxicity control by experiment conducted over addition of inorganic nitrogen or phosphorus at C/N ratio of 100/10, C/N/P ratio of 100/10/1, and C/P ratio of 100/1 in a heavily petroleum-contaminated loessal soil with 12,320 mg/kg of total petroleum hydrocarbon (TPH) content. A 90-day incubation study revealed that low-dose of phosphorus addition with the C/P ratio of 100/1 promoted hydrocarbon degradation and reduced soil ecotoxicity. Microbial community composition analysis suggested that phosphorus addition enriched hydrocarbon degrader Gordonia and Mycolicibacterium genus. The key enzymes EC 5.3.3.8, EC 6.2.1.20 and EC 6.4.1.1 which referred to degradation of long-chain hydrocarbons, unsaturated fatty acids and pyruvate metabolism were abundance by phosphorus supplementation. While nitrogen addition at C/N ratio of 100/10 or C/N/P ratio of 100/10/1 inhibited hydrocarbon degradation and exacerbated soil ecotoxicity due to promoting denitrification and coupling reactions with hydrocarbons. Our results suggested that low-dose phosphorus addition served as a favorable strategy to promote crude oil remediation and ecotoxicity risk control in heavily petroleum-contaminated soil. Hence, the application of suitable doses of exogenous biostimulants is an efficient approach to restore the ecological functions of organically contaminated soils.

19.
Environ Pollut ; 349: 123992, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631451

RESUMO

Achieving the United nations 2030 Sustainable Development Goals (SDGs) remains a significant challenge, necessitating urgent and prioritized strategies. Among the various challenges, air pollution continues to pose one of the most substantial threats to the SDGs due to its widespread adverse effects on human health and ecosystems. However, the connections between air pollution and the SDGs have often been overlooked. This study reveals that out of the 169 SDG targets, 71 are adversely impacted by air pollution, while only 6 show potential positive effects. In China, two major atmospheric nitrogen pollutants, ammonia and nitrogen oxides, resulted in an economic loss of 400 billion United States Dollar (USD) in 2020, which could be reduced by 33% and 34% by 2030, respectively. It would enhance the progress towards SDGs in China by 14%, directly contributing to the achievement of SDGs 1 to 6 and 11 to 15. This improvement is estimated to yield overall benefits totaling 119 billion USD, exceeded the total implementation cost of 82 billion USD with ammonia as the preferential mitigation target. This study underscores the importance of robust scientific evidence in integrated policies aimed at aligning improvements in environmental quality with the priorities of sustainable development.

20.
Am J Bot ; 111(4): e16317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634444

RESUMO

PREMISE: With the global atmospheric CO2 concentration on the rise, developing crops that can thrive in elevated CO2 has become paramount. We investigated the potential of hybridization as a strategy for creating crops with improved growth in predicted elevated atmospheric CO2. METHODS: We grew parent accessions and their F1 hybrids of Arabidopsis thaliana in ambient and elevated atmospheric CO2 and analyzed numerous growth traits to assess their productivity and underlying mechanisms. RESULTS: The heterotic increase in total dry mass, relative growth rate and leaf net assimilation rate was significantly greater in elevated CO2 than in ambient CO2. The CO2 response of net assimilation rate was positively correlated with the CO2 response of leaf nitrogen productivity and with that of leaf traits such as leaf size and thickness, suggesting that hybridization-induced changes in leaf traits greatly affected the improved performance in elevated CO2. CONCLUSIONS: Vegetative growth of hybrids seems to be enhanced in elevated CO2 due to improved photosynthetic nitrogen-use efficiency compared with parents. The results suggest that hybrid crops should be well-suited for future conditions, but hybrid weeds may also be more competitive.


Assuntos
Arabidopsis , Atmosfera , Dióxido de Carbono , Hibridização Genética , Nitrogênio , Folhas de Planta , Dióxido de Carbono/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Atmosfera/química , Fotossíntese , Vigor Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...